Crônicas sobre cabeamento

Categorias de cabos Ethernet explicadas: Uma breve história

Millennials who entered the workforce between 2003 and 2016 are accustomed to the digital era: high-speed internet access, smartphones, online everything. And while they’ve definitely experienced advancements in technology during their lifetime, they may not be aware of just how far copper Ethernet cabling has come to make it all possible. We thought we’d start off 2022 with a little Ethernet history lesson for the younger generation and a walk down memory lane for those of us that have been in the industry a bit longer than we’d like to admit.

24 de fevereiro de 2022

Como testar um transceptor SFP e um cabo de rede

Recently we have been getting questions about how to determine if an SFP (Small Form-factor Pluggable) transceiver is working. We refer to SFP generically here to represent a multitude of the various optical modules that are available. Fluke Networks fiber testers can be used to measure the light that is being put out by an SFP.

21 de janeiro de 2022

Escolha do melhor escopo de fibra óptica para a inspeção de fibra atual

Contaminated connections remain the number one cause of fiber related problems and failures in data centers, campus, and other enterprise or telecom networking environments. But it’s not enough to just clean every fiber end face—there is no way to know if the end face is clean unless you inspect it.

 

4 de janeiro de 2022

Fibra vs. Cobre até a borda: Por que a fibra é uma escolha crescente para edifícios inteligentes e sustentáveis

For years, we’ve heard about FTTX making its way into the horizontal LAN — fiber to the desktop, fiber to the office, fiber to the enclosure, fiber to the zone, etc. Often referred to as “fiber to the edge” or FTTE, most of these deployments have traditionally been for high-security government environments or specialty applications or devices. Now, as bandwidth requirements continue to increase and the commercial real estate industry is trending towards smarter and more sustainable buildings, the question of using fiber vs. copper is more relevant.

8 de dezembro de 2021

What You Need to Know to Choose a PoE Tester

1 de dezembro de 2021

Os seus cabos de fibra óptica e testadores estão prontos para a Ethernet 400G?

Driven by large hyperscale and cloud data center providers, advancements in signaling and transceiver technology have led to the development of next-generation transmission speeds. There are now multiple options available for 400G Ethernet applications over multimode and single-mode fiber with more on the horizon. And it doesn’t stop there—big players like Google, Facebook, and Microsoft are driving innovation to support 800 Gig and 1,6 Terabit applications, and the IEEE Beyond 400 Gig Ethernet Study Group is already defining objectives.

28 de setembro de 2021

Perda por inserção

What is Insertion Loss?

Insertion loss is the amount of energy that a signal loses as it travels along a cable link. It is a natural phenomenon that occurs for any type of transmission—whether it's electricity or data. This reduction of signal, also called attenuation, is directly related to the length of a cable—the longer the cable, the greater the insertion loss. Insertion loss is also caused by any connection points along a cable link (i.e., connectors and splices).

Insertion Loss Formula

25 de agosto de 2021

O Conector LC de Metal: Diga adeus a travas quebradas em cabos de referência de teste de fibra

Embora existam muitos tipos diferentes de conectores ópticos dependendo do tipo de componentes que você está usando, os conectores LC se tornaram muito comuns em todo o setor de redes.

Conectores LC de plástico

O uso de plástico para conexões que serão conectadas e raramente tocadas novamente funciona perfeitamente. Porém, quando essas conexões precisam ser conectadas e desconectadas repetidamente, por exemplo, com cabos de referência de teste de fibra, a trava flexível do compartimento muitas vezes se rompe devido à flexão repetida.

23 de agosto de 2021

Teste de carga PoE: Avançada resolução de problemas para seus sistemas PoE

Since the original IEEE 802.3af Type 1 power over Ethernet (PoE) standard that delivered up to 15,4 Watts (W) was first introduced in 2003, the technology has evolved to include Type 2 (up to 30 W), Type 3 (up to 60 W), and Type 4 (up to 90 W). That means PoE voltage now supports everything from phones, Wi-Fi access points, and surveillance cameras, to laptops, digital displays, and even facility-wide LED lighting—all requiring various levels of PoE power.

27 de julho de 2021